Interleukin-5 (IL-5) is a type 2 cytokine involved in various allergic diseases, including severe eosinophilic asthma. In this study, we performed directed evolution against human IL-5 using systematic evolution of ligands by exponential enrichment (SELEX) from multiple mRNA-displayed peptide libraries. Peptide libraries were prepared with Escherichia coli-based reconstituted cell-free transcription and translation coupling system (PURE system) and spontaneously cyclized using multiple intramolecularly thiol-reactive benzoic acid-derived linkers, which were ribosomally incorporated through genetic code expansion. We successfully identified multiple novel IL-5-binding unnatural cyclic peptides with different cyclization linkers from multiple highly diverse mRNA-displayed libraries. Chemical dimerization was also performed to increase the avidity of unnatural cyclic IL-5-binding peptides. The novel IL-5-binding unnatural cyclic peptides discovered in this study could be used in various research, therapeutic, and diagnostic applications involving IL-5 signaling.
Keywords: Asthma; Genetic code expansion; Interleukin-5; PURE system; SELEX; Unnatural cyclic peptide.
Copyright © 2022 Elsevier Inc. All rights reserved.