Background: Persons with HIV (PWH) undergo white matter changes, which can be quantified using the brain-age gap (BAG), the difference between chronological age and neuroimaging-based brain-predicted age. Accumulation of microstructural damage may be accelerated in PWH, especially with detectable viral load (VL).
Methods: In total, 290 PWH (85% with undetectable VL) and 165 HIV-negative controls participated in neuroimaging and cognitive testing. BAG was measured using a Gaussian process regression model trained to predict age from diffusion magnetic resonance imaging in publicly available normative controls. To test for accelerated aging, BAG was modeled as an age × VL interaction. The relationship between BAG and global neuropsychological performance was examined. Other potential predictors of pathological aging were investigated in an exploratory analysis.
Results: Age and detectable VL had a significant interactive effect: PWH with detectable VL accumulated +1.5 years BAG/decade versus HIV-negative controls (P = .018). PWH with undetectable VL accumulated +0.86 years BAG/decade, although this did not reach statistical significance (P = .052). BAG was associated with poorer global cognition only in PWH with detectable VL (P < .001). Exploratory analysis identified Framingham cardiovascular risk as an additional predictor of pathological aging (P = .027).
Conclusions: Aging with detectable HIV and cardiovascular disease may lead to white matter pathology and contribute to cognitive impairment.
Keywords: HIV; MRI; aging; brain age; diffusion tensor imaging; machine learning; white matter.
© The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.