The fate of plastics in rivers is a key component of the global plastic cycle. Plastics entering freshwater ecosystems are colonized by microbial biofilms, and microbe-plastic interactions can influence ecosystem processes and plastic fate. While literature examining the role of geographic region on plastic biofilms is quickly expanding, research which covers large (i.e., continental) spatial scales and includes freshwater ecosystems is warranted. In addition, most research focuses on bacterial communities, while biofilm eukaryotes are less commonly studied. We assessed biofilm metabolism and community structure on plastic (foamed polystyrene and polyvinyl chloride; PVC) and natural substrates (unglazed ceramic tile) in urban streams spanning a nested geographic gradient in the continental United States. We measured biofilm biomass, community respiration, and chlorophyll a, in addition to assessing marker gene-based community diversity of bacterial, fungal, and algal assemblages. Results demonstrated some substrate-specific trends in biofilm characteristics, including higher biofilm biomass on polystyrene across sites, and lower diversity of bacterial assemblages on both types of plastic litter versus tile. However, there were no differences among substrates for chlorophyll, respiration, and the abundance and diversity of algal and fungal assemblages. Thus, we concluded that the primary driver of biofilm metabolism and community composition were site characteristics, rather than substrate type. Additional studies are needed to quantify which site-specific characteristics drive biofilm dynamics on plastic litter in streams (e.g., water chemistry, light, seasonality, hydrology). These results add to the growing literature on the biofilm 'plastisphere' in aquatic ecosystems, demonstrating that the factors which control the assembly and activity of biofilm communities on plastic substrates (including bacteria, algal, and fungal assemblages together) in urban streams are similar to those driving biofilm dynamics on natural substrates.
Keywords: Biogeochemistry; Biogeography; Microbial communities; Plastic litter; Urban streams.
Copyright © 2022 Elsevier B.V. All rights reserved.