Prolonged microgravity results in muscle atrophy, especially among the anti-gravity spinal muscles. How individual paravertebral muscle groups change in size and composition with spaceflight needs further exploration. This study investigates lumbar spine musculature changes among six crewmembers on long-duration space missions using non-invasive measurement of muscle changes with magnetic resonance imaging (MRI). Pre- and post-flight lumbar images were analyzed for changes in cross-sectional area, volume, and fat infiltration of the psoas (PS), quadratus lumborum (QL), and paraspinal [erector spinae and multifidus (ES + MF)] muscles using mixed models. Crewmembers used onboard exercise equipment, including a cycle ergometer (CEVIS), treadmill (T2/COLBERT), and the advanced resistive exercise device (ARED). Correlations were used to assess muscle changes related to exercise modality. There was substantial variability in muscle changes across crewmembers but collectively a significant decrease in paraspinal area (- 9.0 ± 4.8%, p = 0.04) and a significant increase in QL fat infiltration (7.3 ± 4.1%, p = 0.05). More CEVIS time may have protected against PS volume loss (p = 0.05) and PS fat infiltration (p < 0.01), and more ARED usage may have protected against ES + MF volume loss (p = 0.05). Crewmembers using modern onboard exercise equipment may be less susceptible to muscle changes. However, variability between crewmembers and muscle size and quality losses suggest additional research is needed to ensure in-flight countermeasures preserve muscle health.
Keywords: Cross-sectional area; Lumbar muscle; Magnetic resonance imaging; Microgravity; Muscle fat infiltration; Muscle volume.
© 2022. The Author(s) under exclusive licence to Biomedical Engineering Society.