Background: LRIG1, the founding member of the LRIG (leucine-rich repeat and immunoglobulin-like domain) family of transmembrane proteins, is a negative regulator of receptor tyrosine kinases and a tumour suppressor. Decreased LRIG1 expression is consistently observed in cancer, across diverse tumour types, and is linked to poor patient prognosis. However, mechanisms by which LRIG1 is repressed are not fully understood. Silencing of LRIG1 through promoter CpG island methylation has been reported in colorectal and cervical cancer but studies in breast cancer remain limited.
Methods: In silico analysis of human breast cancer patient data were used to demonstrate a correlation between DNA methylation and LRIG1 silencing in basal/triple-negative breast cancer, and its impact on patient survival. LRIG1 gene expression, protein abundance, and methylation enrichment were examined by quantitative reverse-transcription PCR, immunoblotting, and methylation immunoprecipitation, respectively, in breast cancer cell lines in vitro. We examined the impact of global demethylation on LRIG1 expression and methylation enrichment using 5-aza-2'-deoxycytidine. We also examined the effects of targeted demethylation of the LRIG1 CpG island, and transcriptional activation of LRIG1 expression, using the RNA guided deadCas9 transactivation system.
Results: Across breast cancer subtypes, LRIG1 expression is lowest in the basal/triple-negative subtype so we investigated whether differential methylation may contribute to this. Indeed, we find that LRIG1 CpG island methylation is most prominent in basal/triple-negative cell lines and patient samples. Use of the global demethylating agent 5-aza-2'-deoxycytidine decreases methylation leading to increased LRIG1 transcript expression in basal/triple-negative cell lines, while having no effect on LRIG1 expression in luminal/ER-positive cell lines. Using a CRISPR/deadCas9 (dCas9)-based targeting approach, we demonstrate that TET1-mediated demethylation (Tet1-dCas9) along with VP64-mediated transcriptional activation (VP64-dCas9) at the CpG island, increased endogenous LRIG1 expression in basal/triple-negative breast cancer cells, without transcriptional upregulation at predicted off-target sites. Activation of LRIG1 by the dCas9 transactivation system significantly increased LRIG1 protein abundance, reduced site-specific methylation, and reduced cancer cell viability. Our findings suggest that CRISPR-mediated targeted activation may be a feasible way to restore LRIG1 expression in cancer.
Conclusions: Our study contributes novel insight into mechanisms which repress LRIG1 in triple-negative breast cancer and demonstrates for the first time that targeted de-repression of LRIG1 in cancer cells is possible. Understanding the epigenetic mechanisms associated with repression of tumour suppressor genes holds potential for the advancement of therapeutic approaches.
© 2022. The Author(s).