The MET2 gene of Saccharomyces cerevisiae, which codes for homoserine-O-acetyltransferase, a key enzyme in methionine biosynthesis, was isolated by complementation of a met2 mutant strain of S. cerevisiae with a yeast gene bank. A 3.9-kb genomic fragment contains the entire gene, as demonstrated by genetic and molecular analysis of the integrative transformants. A polyadenylated mRNA of 1700 nt is detected by Northern blot hybridization with a MET2 probe. The level of this mRNA decreases by addition of exogenous methionine or of S-adenosylmethionine, suggesting a transcriptional regulation. The level of specific mRNA and the enzyme activity found in transformants that bear the MET2 gene on a multicopy plasmid suggest that also a post-transcriptional regulatory mechanism may be operative in budding yeast.