A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics

Eur Radiol. 2022 Sep;32(9):6526-6535. doi: 10.1007/s00330-022-08712-8. Epub 2022 Apr 14.

Abstract

Objectives: To determine the value of a deep learning masked (DLM) auto-fixed volume of interest (VOI) segmentation method as an alternative to manual segmentation for radiomics-based diagnosis of clinically significant (CS) prostate cancer (PCa) on biparametric magnetic resonance imaging (bpMRI).

Materials and methods: This study included a retrospective multi-center dataset of 524 PCa lesions (of which 204 are CS PCa) on bpMRI. All lesions were both semi-automatically segmented with a DLM auto-fixed VOI method (averaging < 10 s per lesion) and manually segmented by an expert uroradiologist (averaging 5 min per lesion). The DLM auto-fixed VOI method uses a spherical VOI (with its center at the location of the lowest apparent diffusion coefficient of the prostate lesion as indicated with a single mouse click) from which non-prostate voxels are removed using a deep learning-based prostate segmentation algorithm. Thirteen different DLM auto-fixed VOI diameters (ranging from 6 to 30 mm) were explored. Extracted radiomics data were split into training and test sets (4:1 ratio). Performance was assessed with receiver operating characteristic (ROC) analysis.

Results: In the test set, the area under the ROC curve (AUCs) of the DLM auto-fixed VOI method with a VOI diameter of 18 mm (0.76 [95% CI: 0.66-0.85]) was significantly higher (p = 0.0198) than that of the manual segmentation method (0.62 [95% CI: 0.52-0.73]).

Conclusions: A DLM auto-fixed VOI segmentation can provide a potentially more accurate radiomics diagnosis of CS PCa than expert manual segmentation while also reducing expert time investment by more than 97%.

Key points: • Compared to traditional expert-based segmentation, a deep learning mask (DLM) auto-fixed VOI placement is more accurate at detecting CS PCa. • Compared to traditional expert-based segmentation, a DLM auto-fixed VOI placement is faster and can result in a 97% time reduction. • Applying deep learning to an auto-fixed VOI radiomics approach can be valuable.

Keywords: Biomarkers; Data curation; Deep learning; Multi-center study; Prostatic neoplasms.

Publication types

  • Multicenter Study

MeSH terms

  • Deep Learning*
  • Diffusion Magnetic Resonance Imaging / methods
  • Humans
  • Magnetic Resonance Imaging / methods
  • Male
  • Prostate / diagnostic imaging
  • Prostate / pathology
  • Prostatic Neoplasms* / diagnostic imaging
  • Prostatic Neoplasms* / pathology
  • Retrospective Studies