The black-legged tick, Ixodes scapularis, is a well-known vector for the Lyme disease-causing pathogen (Borrelia burgdorferi) but can also carry other disease-causing pathogens such as Rickettsia, Anaplasma, Bartonella, Ehrlichia, and Theileria. Hence, tick screening using highly specific protein signatures for specific pathogens will help assess the prevalence of infected ticks and understand the pathogen-tick interactions in a specific geographic area. In this study, we used data-dependent acquisition to key pathogen protein signatures in black-legged ticks collected from the Southern Tier New York. Bottom-up proteomic analysis of extract from five combined ticks identified 2,052 tick proteins and 41 pathogen proteins with high confidence (≥ 99% C.I.). Results show high peptide spectral match counts for Rickettsia species and Borrelia species and lower counts for other rarer pathogens such as Anaplasma phagocytophilum. Parallel reaction monitoring performed on protein extracts from individual ticks (n = 10) revealed that 8 out of the 10 screened ticks carried Rickettsia species, 5 carried Borrelia species, 3 carried both pathogens, and only 1 tick carried no detectable bacteria. Mass spectrometry-based proteomics is a highly specific way to define the expression of different types of pathogen proteins in infected ticks. This might bring insights into the tick-pathogen interactions at the molecular level and especially expression pathogen surface proteins in ticks.
Keywords: Borrelia; Lyme disease; Mass spectrometry; Proteomics; Rickettsia; Ticks.
© 2022. Springer-Verlag GmbH Germany, part of Springer Nature.