Real-time OCT image denoising using a self-fusion neural network

Biomed Opt Express. 2022 Feb 14;13(3):1398-1409. doi: 10.1364/BOE.451029. eCollection 2022 Mar 1.

Abstract

Optical coherence tomography (OCT) has become the gold standard for ophthalmic diagnostic imaging. However, clinical OCT image-quality is highly variable and limited visualization can introduce errors in the quantitative analysis of anatomic and pathologic features-of-interest. Frame-averaging is a standard method for improving image-quality, however, frame-averaging in the presence of bulk-motion can degrade lateral resolution and prolongs total acquisition time. We recently introduced a method called self-fusion, which reduces speckle noise and enhances OCT signal-to-noise ratio (SNR) by using similarity between from adjacent frames and is more robust to motion-artifacts than frame-averaging. However, since self-fusion is based on deformable registration, it is computationally expensive. In this study a convolutional neural network was implemented to offset the computational overhead of self-fusion and perform OCT denoising in real-time. The self-fusion network was pretrained to fuse 3 frames to achieve near video-rate frame-rates. Our results showed a clear gain in peak SNR in the self-fused images over both the raw and frame-averaged OCT B-scans. This approach delivers a fast and robust OCT denoising alternative to frame-averaging without the need for repeated image acquisition. Real-time self-fusion image enhancement will enable improved localization of OCT field-of-view relative to features-of-interest and improved sensitivity for anatomic features of disease.