DFT-calculations allow prediction of the reactivity of uncommon N-heterocyclic scaffolds of pyrazolo[1,5-a]pyrimidines and imidazo[1,2-b]pyridazines and considerably facilitate their functionalization. The derivatization of these N-heterocycles was realized using Grignard reagents for nucleophilic additions to 5-chloropyrazolo[1,5-a]pyrimidines and TMP2 Zn ⋅ 2 MgCl2 ⋅ 2 LiCl allowed regioselective zincations. In the case of 6-chloroimidazo[1,2-b]pyridazine, bases such as TMP2 Zn ⋅ MgCl2 ⋅ 2 LiCl, in the presence or absence of BF3 ⋅ OEt2 , led to regioselective metalations at positions 3 or 8. Subsequent functionalizations were achieved with TMPMgCl ⋅ LiCl, producing various polysubstituted derivatives (up to penta-substitution). X-ray analysis confirmed the regioselectivity for key functional heterocycles.
Keywords: DFT calculation; N-heterocycle; imidazopyridazines; magnesium; pyrazolopyrimidines.
© 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.