Reliable Functionalization of 5,6-Fused Bicyclic N-Heterocycles Pyrazolopyrimidines and Imidazopyridazines via Zinc and Magnesium Organometallics

Chemistry. 2022 Jun 10;28(33):e202200733. doi: 10.1002/chem.202200733. Epub 2022 May 11.

Abstract

DFT-calculations allow prediction of the reactivity of uncommon N-heterocyclic scaffolds of pyrazolo[1,5-a]pyrimidines and imidazo[1,2-b]pyridazines and considerably facilitate their functionalization. The derivatization of these N-heterocycles was realized using Grignard reagents for nucleophilic additions to 5-chloropyrazolo[1,5-a]pyrimidines and TMP2 Zn ⋅ 2 MgCl2 ⋅ 2 LiCl allowed regioselective zincations. In the case of 6-chloroimidazo[1,2-b]pyridazine, bases such as TMP2 Zn ⋅ MgCl2 ⋅ 2 LiCl, in the presence or absence of BF3 ⋅ OEt2 , led to regioselective metalations at positions 3 or 8. Subsequent functionalizations were achieved with TMPMgCl ⋅ LiCl, producing various polysubstituted derivatives (up to penta-substitution). X-ray analysis confirmed the regioselectivity for key functional heterocycles.

Keywords: DFT calculation; N-heterocycle; imidazopyridazines; magnesium; pyrazolopyrimidines.

MeSH terms

  • Indicators and Reagents
  • Magnesium*
  • Pyrimidines
  • Zinc*

Substances

  • Indicators and Reagents
  • Pyrimidines
  • Magnesium
  • Zinc