Developing more sustainable catalytic processes for preparing N-heterocyclic compounds in a less costly, compact, and greener manner from cheap and readily available reagents is highly desirable in modern synthetic chemistry. Herein, we report a straightforward synthesis of benzimidazoles by reductive coupling of o-dinitroarenes with aldehydes in the presence of molecular hydrogen. An innovative molecular cluster-based synthetic strategy that employs Mo3S4 complexes as precursors have been used to engineer a sulfur-deficient molybdenum disulfide (MoS2)-type material displaying structural defects on both the naturally occurring edge positions and along the typically inactive basal planes. By applying this catalyst, a broad range of functionalized 2-substituted benzimidazoles, including bioactive compounds, can be selectively synthesized by such a direct hydrogenative coupling protocol even in the presence of hydrogenation-sensitive functional groups, such as double and triple carbon-carbon bonds, nitrile and ester groups, and halogens as well as diverse types of heteroarenes.
© 2022 The Authors. Published by American Chemical Society.