The human brain dynamically shifts between a predominantly integrated state and a predominantly segregated state, each with different roles in supporting cognition and behavior. However, no studies to date have investigated lesions placed in different regions of the cerebral cortex to determine the effects on the temporal balance of integration and segregation. Here, we used the integrated state occurrence rate to measure the temporal balance of integration and segregation in the resting brain. Based on dynamic mean-field models coupled through the individual's structural white matter connections, neural activity was modeled. By lesioning different individual nodes from the model, our results implied that the impact of lesions reaches far beyond focal damage and could impair cognition by affecting system-level dynamics. Lesions in a portion of the nodes in the visual, somatomotor, limbic, and default networks significantly compromised the temporal balance of integration and segregation. Crucially, the effects of lesions in different regions could be predicted based on the hierarchical axis inferred from the T1w/T2w map and specific graph measures of structural brain networks. Taken together, our findings indicate the possibility of significant contributions of anatomical heterogeneity to the dynamics of functional network topology. Although still in its infancy, computational modeling may provide an entry point for understanding brain disorders at a causal mechanistic level, possibly leading to novel, more effective therapeutic interventions.
Keywords: Anatomical hierarchy; Computational modeling; Functional dynamics; Graph theory; Virtual lesions.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.