Tralopyril is an emerging marine antifouling agent with limited data on its effects on fish growth and calcium regulation. To determine the changes induced by long-term exposure to tralopyril, multi-levels (such as molecular, biochemical, and individual levels) responses were measured in turbot at different concentrations (1 μg/L, 20 μg/L). The results showed that 1 μg/L mainly affected the immune response, while 20 μg/L affected the synthesis and metabolism of steroids and fat. However, different concentrations of tralopyril affected the synthesis, secretion and action of parathyroid hormone and growth hormone. The expression of GH/IGF axis gene and the level of growth hormone increased significantly, leading to abnormal growth. The energy tradeoff between immunity and growth at 1 μg/L tralopyril pressure may inhibit growth. The change of Ca2+ level was accompanied by the disturbance of PTH-related gene expression. The results of molecular docking showed that the disturbance of Ca2+ regulation might be attributed to the inhibition of vitamin D receptor by tralopyril, which affected the vitamin D signaling pathway. This study provides scientific data for the in-depth understanding and risk assessment of the toxicological effects of tralopyril and reveals the potential threat of tralopyril to environmental health.
Keywords: Marine fish; Physiological responses; RNA-Seq; Tralopyril.
Copyright © 2022 Elsevier Ltd. All rights reserved.