A regression-based QSAR-model to predict acute toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica): Calibration, validation, and future developments to support risk assessment of chemicals in amphibians

Sci Total Environ. 2022 Jul 15:830:154795. doi: 10.1016/j.scitotenv.2022.154795. Epub 2022 Mar 25.

Abstract

Amphibian populations are undergoing a global decline worldwide. Such decline has been attributed to their unique physiology, ecology, and exposure to multiple stressors including chemicals, temperature, and biological hazards such as fungi of the Batrachochytrium genus, viruses such as Ranavirus, and habitat reduction. There are limited toxicity data for chemicals available for amphibians and few quantitative structure-activity relationship (QSAR) models have been developed and are publicly available. Such QSARs provide important tools to assess the toxicity of chemicals particularly in a data poor context. QSARs provide important tools to assess the toxicity of chemicals particularly when no toxicological data are available. This manuscript provides a description and validation of a regression-based QSAR model to predict, in a quantitative manner, acute lethal toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica). QSAR models for acute median lethal molar concentrations (LC50-12 h) of waterborne chemicals using the Monte Carlo method were developed. The statistical characteristics of the QSARs were described as average values obtained from five random distributions into training and validation sets. Predictions from the model gave satisfactory results for the overall training set (R2 = 0.72 and RMSE = 0.33) and were even more robust for the validation set (R2 = 0.96 and RMSE = 0.11). Further development of QSAR models in amphibians, particularly for other life stages and species, are discussed.

Keywords: Acute toxicity; Index of ideality of correlation; Monte Carlo method; QSAR; Rana japonica tadpole.

MeSH terms

  • Animals
  • Calibration
  • Larva
  • Quantitative Structure-Activity Relationship*
  • Ranidae*
  • Risk Assessment