Predicting Impact of Food and Feeding Time on Oral Absorption of Drugs with a Novel Rat Continuous Intestinal Absorption Model

Drug Metab Dispos. 2022 Jun;50(6):750-761. doi: 10.1124/dmd.122.000831. Epub 2022 Mar 26.

Abstract

Intricacies in intestinal physiology, drug properties, and food effects should be incorporated into models to predict complex oral drug absorption. A previously published human continuous intestinal absorption model based on the convection-diffusion equation was modified specifically for the male Sprague-Dawley rat in this report. Species-specific physiologic conditions along intestinal length - experimental velocity and pH under fasted and fed conditions, were measured and incorporated into the intestinal absorption model. Concentration-time (C-t) profiles were measured upon a single intravenous and peroral (PO) dose for three drugs: amlodipine (AML), digoxin (DIG), and glyburide (GLY). Absorption profiles were predicted and compared with experimentally collected data under three feeding conditions: 12-hour fasted rats were provided food at two specific times after oral drug dose (1 hour and 2 hours for AML and GLY; 0.5 hours and 1 hour for DIG), or they were provided food for the entire study. Intravenous versus PO C-t profiles suggested absorption even at later times and informed design of appropriate mathematical input functions based on experimental feeding times. With this model, AML, DIG, and GLY oral C-t profiles for all feeding groups were generally well predicted, with exposure overlap coefficients in the range of 0.80-0.97. Efflux transport for DIG and uptake and efflux transport for GLY were included, modeling uptake transporter inhibition in the presence of food. Results indicate that the continuous intestinal rat model incorporates complex physiologic processes and feeding times relative to drug dose into a simple framework to provide accurate prediction of oral absorption. SIGNIFICANCE STATEMENT: A novel rat continuous intestinal model predicts drug absorption with respect to time and intestinal length. Feeding time relative to dose was modeled as a key effect. Experimental fasted/fed intestinal pH and velocity, efflux and uptake transporter expression along intestinal length, and uptake transporter inhibition in the presence of food were modeled. The model uses the pharmacokinetic profiles of three model drugs and provides a novel framework to study food effects on absorption.

MeSH terms

  • Administration, Oral
  • Animals
  • Biological Transport
  • Intestinal Absorption* / physiology
  • Male
  • Membrane Transport Proteins
  • Rats
  • Rats, Sprague-Dawley
  • Time Factors

Substances

  • Membrane Transport Proteins