Intra-macrophage expression of ArtAB toxin gene in Salmonella

Microbiology (Reading). 2022 Mar;168(3). doi: 10.1099/mic.0.001152.

Abstract

Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) definitive phage type 104 (DT104), S. Worthington, and S. bongori produce ArtAB toxin, which catalyses ADP-ribosylation of pertussis toxin-sensitive G protein. ArtAB gene (artAB) is encoded on a prophage in Salmonella, and prophage induction by SOS-inducing agents is associated with increases in ArtAB production in vitro. However, little is known about the expression of artAB in vivo. Here, we showed a significant increase in artAB transcription of DT104 within macrophage-like RAW264.7 cells. Intracellular expression of ArtAB was also observed by immunofluorescence staining. The induced expression of artAB in DT104 and S. bongori was enhanced by treatment of RAW264.7 cells with phorbol 12-myristate 13-acetate (PMA), which stimulates the production of reactive oxygen species (ROS); however, such induction was not observed in S. Worthington. Upregulation of oxyR, a major regulator of oxidative stress, and cI, a repressor of prophage induction, was observed in S. Worthington within RAW264.7 cells treated with PMA but not in the DT104 strain. Although the expression of oxyR was increased, artAB was upregulated in S. bongori, which lacks the cI gene in the incomplete artAB-encoded prophage. Taken together, oxidative stress plays a role in the production of artAB toxins in macrophages, and high expression levels of oxyR and cI are responsible for the low expression of artAB. Therefore, strain variation in the level of artAB expression within macrophages could be explained by differences in the oxidative stress response of bacteria and might be reflected in its virulence.

Keywords: ArtAB; ROS; Salmonella; intra-macrophage expression; oxyR; pertussis-like toxin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Macrophages*
  • Prophages / genetics
  • Salmonella typhimurium* / metabolism
  • Virulence