In many low-income countries, the poor availability of lung biopsy leads to delayed diagnosis of lung cancer (LC), which can appear radiologically similar to tuberculosis (TB). To assess the ability of CT Radiomics in differentiating between TB and LC, and to evaluate the potential predictive role of clinical parameters, from March 2020 to September 2021, patients with histological diagnosis of TB or LC underwent chest CT evaluation and were retrospectively enrolled. Exclusion criteria were: availability of only enhanced CT scans, previous lung surgery and significant CT motion artefacts. After manual 3D segmentation of enhanced CT, two radiologists, in consensus, extracted and compared radiomics features (T-test or Mann−Whitney), and they tested their performance, in differentiating LC from TB, via Receiver operating characteristic (ROC) curves. Forty patients (28 LC and 12 TB) were finally enrolled, and 31 were male, with a mean age of 59 ± 13 years. Significant differences were found in normal WBC count (p < 0.019) and age (p < 0.001), in favor of the LC group (89% vs. 58%) and with an older population in LC group, respectively. Significant differences were found in 16/107 radiomic features (all p < 0.05). LargeDependenceEmphasis and LargeAreaLowGrayLevelEmphasis showed the best performance in discriminating LC from TB, (AUC: 0.92, sensitivity: 85.7%, specificity: 91.7%, p < 0.0001; AUC: 0.92, sensitivity: 75%, specificity: 100%, p < 0.0001, respectively). Radiomics may be a non-invasive imaging tool in many poor nations, for differentiating LC from TB, with a pivotal role in improving oncological patients’ management; however, future prospective studies will be necessary to validate these initial findings.
Keywords: chest CT; lung cancer; lung imaging; multidetector computed tomography; oncology; precision medicine; radiomics; texture analysis; tuberculosis.