Using postal change-of-address data to predict second waves in infections near pandemic epicentres

Epidemiol Infect. 2022 Mar 24:150:e120. doi: 10.1017/S0950268822000486.

Abstract

We propose that postal Change-of-Address (CoA) data can be used to monitor/predict likely second wave caseloads in viral infections around urban epicentres. To illustrate the idea, we focus on the tri-state area consisting of New York City (NYC) and surrounding counties in New York, New Jersey and Connecticut States. NYC was an early epicentre of the coronavirus disease 2019 (Covid-19) pandemic, with a first peak in daily cases in early April 2020, followed by the second peak in May/June 2020. Using CoA data from the US Postal Service (USPS), we show that, despite a quarantine mandate, there was a large net movement of households from NYC to surrounding counties in the period April-June 2020. This net outward migration of households was strongly correlated with both the timing and the number of cases in the second peaks in Covid-19 cases in the surrounding counties. The timing of the second peak was also correlated with the distance of the county from NYC, suggesting that this was a directed flow and not random diffusion. Our analysis shows that CoA data is a useful method in tracking the spread of an infectious pandemic agent from urban epicentres.

Keywords: Covid-19; household migration and second wave in NY tristate area.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19* / epidemiology
  • Humans
  • New York City / epidemiology
  • Pandemics*
  • Quarantine