As multimedia technology is developing and growing these days, the use of an enormous number of images and its datasets is likewise expanding at a quick rate. Such datasets can be utilized for the purpose of image retrieval. This research focuses on extraction of similar images established on its different features for the image retrieval purpose from huge dataset of images. In this paper initially, the query image is searched within the available dataset and, then, the color difference histogram (CDH) descriptor is employed to retrieve the images from database. The basic characteristic of CDH is that it counts the color difference stuck among two distinct labels in the L ∗ a ∗ b ∗ color space. This method is experimented on random images used for various medical purposes. Various unlike features of an image are extracted via different distance methods. The precision rate, recall rate, and F-measure are all used to evaluate the system's performance. Comparative analysis in terms of F-measure is also made to check for the best distance method used for retrieval of images.
Copyright © 2022 Himani Chugh et al.