Background: THC and CBD are the principal phyto-cannabinoids in the cannabis plant. The differential and possibly antagonistic effects of these compounds on specific brain and behavioral responses, and the mechanisms underlying their effects have generated extensive interest in pre-clinical and clinical neuroscience investigations. Methods: In this double-blind randomized placebo-controlled counterbalanced Human Laboratory Study, we examined the effects of three different dose ratios of CBD:THC (1:1, 2:1, and 3:1) on "neural noise," an electrophysiological biomarker of psychosis known to be sensitive to cannabinoids as well as subjective and psychotomimetic effects. Healthy volunteers (n=28, 12 women) with at least one prior exposure to cannabis participated in the study. Outcomes: The lowest CBD (2.5 mg):THC (0.035 mg/kg) ratio (1:1) resulted in maximal attenuation of both THC-induced psychotomimetic effects (Positive and Negative Syndrome Scale [PANSS] positive: Anova Type Statistic [ATS]=7.83, pcorrected=0.015) and neural noise (ATS=8.83, pcorrected=0.009). Further addition of CBD did not reduce the subjective experience of THC-induced "high" (p>0.05 for all CBD doses). Interpretation: These novel results demonstrate that CBD attenuates specific THC-induced subjective and objective effects relevant to psychosis in a dose/ratio-dependent manner. Given the increasing global trend of cannabis liberalization and application for medical indications, these results assume considerable significance given the potential dose-related interactions of these key phyto-cannabinoids. Trial registration: The trial was registered in clinicaltrials.gov ID: NCT01180374.
Keywords: CBD; Lempel-Ziv complexity; delta-9-tetrahydrocannabinol; electrophysiology; neural noise; psychosis.