Leveraging Substrate Stiffness to Promote Stem Cell Asymmetric Division via Mechanotransduction-Polarity Protein Axis and Its Bayesian Regression Analysis

Rejuvenation Res. 2022 Apr;25(2):59-69. doi: 10.1089/rej.2021.0039.

Abstract

Asymmetric division of stem cells is an evolutionarily conserved process in multicellular organisms responsible for maintaining cellular fate diversity. Symmetric-asymmetric division pattern of mesenchymal stem cells (MSCs) is regulated by both biochemical and biophysical cues. However, modulation of mechanotransduction pathway by varying scaffold properties and their adaptation to control stem cell division fate is not widely established. In this study, we explored the interplay between the mechanotransduction pathway and polarity protein complex in stem cell asymmetry under varied biophysical stimuli. We hypothesize that variation of scaffold stiffness will impart mechanical stimulus and control the cytoskeleton assembly through RhoA, which will lead to further downstream activation of polarity-related cell signaling and asymmetric division of MSCs. To establish the hypothesis, umbilical cord-derived MSCs were cultured on polycaprolactone/collagen scaffolds with varied stiffness, and expression levels of several important genes (viz., Yes-associated protein [YAP], transcriptional coactivator with PDZ-binding motif [TAZ], LATS1, LATS2, Par3, Par6, PRKC1 [homolog of aPKC] and RhoA), and biomarkers (viz. YAP, TAZ, F-actin, Numb) were assessed. Support vector machine polarity index was employed to understand the polarization status of the MSCs cultured on varied scaffold stiffness. Furthermore, the Bayesian logistic regression model was employed for classifying the asymmetric division of MSCs cultured on different scaffold stiffnesses that showed 91% accuracy. This study emphasizes the vital role of scaffold properties in modulating the mechanotransduction signaling pathway of MSCs and provides mechanistic basis for adopting facile method to control stem cell division pattern toward improving tissue engineering outcome.

Keywords: Bayesian logistic regression model; asymmetric cell division; cellular polarity; mesenchymal stem cells; scaffold stiffness.

MeSH terms

  • Bayes Theorem
  • Cell Differentiation
  • Mechanotransduction, Cellular*
  • Mesenchymal Stem Cells*
  • Regression Analysis
  • Stem Cells