Here we show a general approach to achieve dissipative control over toehold-mediated strand-displacement, the most widely employed reaction in the field of DNA nanotechnology. The approach relies on rationally re-engineering the classic strand displacement reaction such that the high-energy invader strand (fuel) is converted into a low-energy waste product through an energy-dissipating reaction allowing the spontaneous return to the original state over time. We show that such dissipative control over the toehold-mediated strand displacement process is reversible (up to 10 cycles), highly controllable and enables unique temporal activation of DNA systems. We show here two possible applications of this strategy: the transient labelling of DNA structures and the additional temporal control of cascade reactions.
Keywords: DNA Nanotechnology; Dissipative Self-Assembly; Strand Displacement Reaction; Temporal Control.
© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.