Localized drug delivery from drug-eluting stents (DESs) to target sites provides therapeutic efficacy with minimal systemic toxicity. However, DESs failure may cause thrombosis, delay arterial healing, and impede re-endothelialization. Bivalirudin (BVLD) and nitric oxide (NO) promote arterial healing. Nevertheless, it is difficult to combine hydrophilic signal molecules with hydrophobic antiproliferative drugs while maintaining their bioactivity. Here, we fabricated a micro- to nanoscale network assembly consisting of copper ion and epigallocatechin gallate (EGCG) via π-π interactions, metal coordination, and oxidative polymerization. The network incorporated rapamycin and immobilized BVLD by the thiol-ene "click" reaction and provided sustained rapamycin and NO release. Unlike rapamycin-eluting stents, those coated with the EGCG-Cu-rapamycin-BVLD complex favored competitive endothelial cell (EC) growth over that of smooth muscle cells, exhibited long-term antithrombotic efficacy, and attenuated the negative impact of rapamycin on the EC. In vivo stent implantation demonstrated that the coating promoted endothelial regeneration and hindered restenosis. Therefore, the polyphenol-network-mediated surface chemistry can be an effective strategy for the engineering of multifunctional surfaces.
Keywords: antirestenosis; antithrombogenicity; cardiovascular stent; endothelialization; inflammatory regulation; polyphenol-Cu network.