SignificanceSkin is recognized as an intricate assembly of molecular components, which facilitate cell signaling, metabolism, and protein synthesis mechanisms in order to offer protection, regulation, and sensation to the body. Our study takes significant steps to characterize in more detail the complex chemistry of the skin, in particular by generating a better understanding of the uppermost layer, the stratum corneum. Using a state-of-the-art 3D OrbiSIMS technique, we were able to observe the depth distribution, in situ, for a wide range of molecular species. This unprecedented molecular characterization of skin provides information that has the potential to benefit research into fundamental processes, such as those associated with skin aging and disease, and the development and delivery of effective topical formulations.
Keywords: 3D OrbiSIMS; mass spectrometry; skin; stratum corneum.