Enzymatic Verification and Comparative Analysis of Carrageenan Metabolism Pathways in Marine Bacterium Flavobacterium algicola

Appl Environ Microbiol. 2022 Apr 12;88(7):e0025622. doi: 10.1128/aem.00256-22. Epub 2022 Mar 16.

Abstract

Marine bacteria usually contain polysaccharide utilization loci (PUL) for metabolizing red algae polysaccharides. They are of great significance in the carbon cycle of the marine ecosystem, as well as in supporting marine heterotrophic bacterial growth. Here, we described the whole κ-carrageenan (KC), ι-carrageenan (IC), and partial λ-carrageenan (LC) catabolic pathways in a marine Gram-negative bacterium, Flavobacterium algicola, which is involved carrageenan polysaccharide hydrolases, oligosaccharide sulfatases, oligosaccharide glycosidases, and the 3,6-anhydro-d-galactose (d-AHG) utilization-related enzymes harbored in the carrageenan-specific PUL. In the pathways, the KC and IC were hydrolyzed into 4-sugar-unit oligomers by specific glycoside hydrolases. Then, the multifunctional G4S sulfatases would remove their nonreducing ends' G4S sulfate groups, while the ι-neocarratetrose (Nι4) product would further lose the nonreducing end of its DA2S group. Furthermore, the neocarrageenan oligosaccharides (NCOSs) with no G4S and DA2S groups in their nonreducing ends would completely be decomposed into d-Gal and d-AHG. Finally, the released d-AHG would enter the cytoplasmic four-step enzymatic process, and an l-rhamnose-H+ transporter (RhaT) was preliminarily verified for the function for transportation of d-AHG. Moreover, comparative analysis with the reported carrageenan metabolism pathways further implied the diversity of microbial systems for utilizing the red algae carrageenan. IMPORTANCE Carrageenan is the main polysaccharide of red macroalgae and is composed of d-AHG and d-Gal. The carrageenan PUL (CarPUL)-encoded enzymes exist in many marine bacteria for decomposing carrageenan to provide self-growth. Here, the related enzymes in Flavobacterium algicola for metabolizing carrageenan were characterized for describing the catabolic pathways, notably, although the specific polysaccharide hydrolases existed that were like previous studies. A multifunctional G4S sulfatase also existed, which was devoted to the removal of G4S or G2S sulfate groups from three kinds of NCOSs. Additionally, the transformation of three types of carrageenans into two monomers, d-Gal and d-AHG, occurred outside the cell with no periplasmic reactions that existed in previously reported pathways. These results help to clarify the diversity of marine bacteria using macroalgae polysaccharides.

Keywords: Flavobacterium algicola; polysaccharide utilization loci; polysaccharides; red algae.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carrageenan / metabolism
  • Ecosystem
  • Flavobacterium / metabolism
  • Glycoside Hydrolases / metabolism
  • Oligosaccharides
  • Polysaccharides / metabolism
  • Rhodophyta*
  • Seaweed*
  • Sulfatases
  • Sulfates

Substances

  • Oligosaccharides
  • Polysaccharides
  • Sulfates
  • Carrageenan
  • Sulfatases
  • Glycoside Hydrolases

Supplementary concepts

  • Flavobacterium algicola