Increasing evidence suggests an association between fine particulate matter (PM2.5) exposure and type 2 diabetes mellitus. However, there is still a lack of comparative evaluation regarding diabetes burden due to ambient and indoor PM2.5 pollution at a global scale. This study attempts to provide a systematic and comprehensive profile for PM2.5-attributable burden of diabetes and its spatiotemporal trends, globally and regionally. Comparative estimates of diabetes attributable to ambient PM2.5 and household air pollution (HAP) from solid fuels for 204 countries and territories were derived from the Global Burden of Disease Study 2019. Globally, 292.5 (95% uncertainty interval: 207.1, 373.4) thousand deaths and 13.0 (9.1, 17.2) million disability-adjusted life years (DALYs) from diabetes were attributed to PM2.5 pollution in 2019, wherein more than two-thirds (67.3% deaths and 69.7% DALYs) were contributed by ambient PM2.5. Compared to 1990, age-standardized DALY rate (ASDR) in 2019 attributable to ambient PM2.5 increased by 85.9% (APC: 2.21% [2.15, 2.27]), while HAP-associated ASDR decreased by 37.9% (APC: - 1.66% [- 1.82, - 1.50]). We observed a negative correlation between SDI and APC in ASMR (rs = - 0.5, p < 0.001) and ASDR (rs = -0.4, p < 0.001) among 204 countries and territories. HAP-related diabetes experienced a sharp decline during 1990-2019, while global burden of diabetes attributable to ambient PM2.5 was rising rapidly. The elderly and people in low-SDI countries suffered from the greatest burden of diabetes due to PM2.5 pollution. More targeted interventions should be taken by governments to reduce PM2.5 exposure and related diabetes burden.
Keywords: Ambient particulate matter pollution; Diabetes; Disability-adjusted life years; Disease burden; Household air pollution from solid fuels.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.