The spiral-grooved structure has been proposed for promoting the load capacity and stiffness of hybrid air journal bearings. In this paper, the dynamic characteristics of spiral-grooved hybrid bearings are first calculated. The stability criteria of the bearings are proposed and analyzed with different groove structure parameters using frequency domain analysis. It is found that the length of the spiral-groove has significant influence on the stability of the spindle system. Finally, the critical speed of the spiral-grooved hybrid bearing and rotor system is analyzed, and an experiment is carried out to validate the proposed model, finding that groove structure can promote the stability of the air bearing systems.
Keywords: critical speed; dynamic performance experiments; high-speed condition; spiral-grooved hybrid air journal bearings; stability of the air bearing.