Introduction: Numerous therapeutic agents specifically targeting the mesenchymal-epithelial transition (MET) oncogene are being developed.
Objective: The aim of the current review was to systematically identify and analyze clinical trials that have evaluated MET inhibitors in various cancer types and to provide an overview of their clinical outcomes.
Methods: An electronic literature search was carried out in the PubMed and Embase databases to identify published clinical trials related to MET inhibitors. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement was followed for the systematic appraisal of the literature. Data related to clinical outcomes, including progression-free survival, overall survival, objective response rate, and overall tumor response, were extracted.
Results: In total, 49 publications were included. Among these, 51.02% were phase II studies, 14.28% were randomized controlled trials, three were phase III studies, two were prospective observational studies, and the remainder were either phase I or Ib studies. The majority (44.89%) of articles reported the clinical outcomes of MET inhibitors, including small molecules, monoclonal antibodies, and other agents, in patients with non-small-cell lung cancer (NSCLC) harboring MET alterations. MET amplification, overexpression, and MET exon 14 skipping mutations were the major MET alteration types reported across the included studies. Clinical responses/outcomes varied considerably.
Conclusion: This systematic literature review provides an overview of the literature available in Embase and PubMed regarding MET-targeted therapies. MET-selective tyrosine kinase inhibitors (TKIs) (capmatinib, tepotinib, and savolitinib) may become a new standard of care in NSCLC, specifically with MET exon 14 skipping mutations. A combination of MET TKIs with epidermal growth factor receptor (EGFR) TKIs (osimertinib + savolitinib, tepotinib + gefitinib) may be a potential solution for MET-driven EGFR TKI resistance. Further, MET alteration (MET amplification/overexpression) may be an actionable target in gastric cancer and papillary renal cell carcinoma.
© 2022. The Author(s).