Although research on the metabolism related to gastric cancer (GC) is gradually gaining increasing interest, there are few studies regarding metabolism-related genes in GC. Understanding the characteristic changes of metabolism-related genes at the transcriptional and protein levels in GC will help us to identify new biomarkers and novel therapeutic targets. We harvested six pairs of samples from GC patients and evaluated the differentially expressed proteins using mass spectrometry-based proteomics. RNA sequencing was conducted simultaneously to detect the corresponding expression of mRNAs, and bioinformatics analysis was used to reveal the correlation of significant differentially expressed genes. A total of 57 genes were observed to be dysregulated both in proteomics and transcriptomics. Bioinformatics analysis showed that these differentially expressed genes were significantly associated with regulating metabolic activity. Further, 14 metabolic genes were identified as potential targets for GC patients and were related to immune cell infiltration. Moreover, we found that dysregulation of branched-chain amino acid transaminase 2 (BCAT2), one of the 14 differentially expressed metabolism-related genes, was associated with the overall survival time in GC patients. We believe that this study provides comprehensive information to better understand the mechanism underlying the progression of GC metastasis and explores the potential therapeutic and prognostic metabolism-related targets for GC.
Keywords: BCAT2; differential metabolic genes; gastric cancer; proteomics; transcriptome.
Copyright © 2022 Zhang, Liu, Feng, Wang, Lei, Chen and Song.