Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy that causes endless pain for patients and accounts for thousands of deaths worldwide. The development of an effective AML treatment is a topic of ongoing interest. Here, we demonstrated that a pyroptosis inhibitor necrosulfonamide (NSA) can selectively induce highly toxic double-strand breaks and kill AML cells. Mechanistically, reactive oxygen species (ROS) were the key effectors mediating the toxicity of NSA. These results probably indicate that NSA is a novel candidate for the treatment of AML.