Tumor immune cell clustering and its association with survival in African American women with ovarian cancer

PLoS Comput Biol. 2022 Mar 2;18(3):e1009900. doi: 10.1371/journal.pcbi.1009900. eCollection 2022 Mar.

Abstract

New technologies, such as multiplex immunofluorescence microscopy (mIF), are being developed and used for the assessment and visualization of the tumor immune microenvironment (TIME). These assays produce not only an estimate of the abundance of immune cells in the TIME, but also their spatial locations. However, there are currently few approaches to analyze the spatial context of the TIME. Therefore, we have developed a framework for the spatial analysis of the TIME using Ripley's K, coupled with a permutation-based framework to estimate and measure the departure from complete spatial randomness (CSR) as a measure of the interactions between immune cells. This approach was then applied to epithelial ovarian cancer (EOC) using mIF collected on intra-tumoral regions of interest (ROIs) and tissue microarrays (TMAs) from 160 high-grade serous ovarian carcinoma patients in the African American Cancer Epidemiology Study (AACES) (94 subjects on TMAs resulting in 263 tissue cores; 93 subjects with 260 ROIs; 27 subjects with both TMA and ROI data). Cox proportional hazard models were constructed to determine the association of abundance and spatial clustering of tumor-infiltrating lymphocytes (CD3+), cytotoxic T-cells (CD8+CD3+), and regulatory T-cells (CD3+FoxP3+) with overall survival. Analysis was done on TMA and ROIs, treating the TMA data as validation of the findings from the ROIs. We found that EOC patients with high abundance and low spatial clustering of tumor-infiltrating lymphocytes and T-cell subsets in their tumors had the best overall survival. Additionally, patients with EOC tumors displaying high co-occurrence of cytotoxic T-cells and regulatory T-cells had the best overall survival. Grouping women with ovarian cancer based on both cell abundance and spatial contexture showed better discrimination for survival than grouping ovarian cancer cases only by cell abundance. These findings underscore the prognostic importance of evaluating not only immune cell abundance but also the spatial contexture of the immune cells in the TIME. In conclusion, the application of this spatial analysis framework to the study of the TIME could lead to the identification of immune content and spatial architecture that could aid in the determination of patients that are likely to respond to immunotherapies.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Black or African American*
  • Carcinoma, Ovarian Epithelial / pathology
  • Cluster Analysis
  • Female
  • Humans
  • Lymphocytes, Tumor-Infiltrating
  • Ovarian Neoplasms* / pathology
  • Tumor Microenvironment