Background: Hospitals in low resource settings (LRS) can benefit from modern laparoscopic methodologies. However, cleaning, maintenance and costs requirements play a stronger role while training and technology are less available. Steerable laparoscopic instruments have additional requirements in these settings and need extra identified adaptations in their design.
Method: Several modular detachability and tip steerability features were applied to the SATA-LRS instrument platform designed specifically for LRS. Ten subjects participated a dis- and reassembly experiment to validate the modularity, and in a steering experiment using a custom made set-up to validate steering.
Results: A new steerable SATA-LRS instrument was developed with the ability to exchange end-effectors through a disassembly of the shafts. Experiments showed an average 34 and 90 s for complete dis- and reassembly, respectively. Participants were able to handle the instrument independently after a single demonstration and 4 rounds of repetitions. Precise tip-target alignment in the box set-up showed a very short learning-curve of 6 repetitions.
Conclusion: A novel instrument platform with articulating and rotating end-effector was designed for LRS. Within a minute the SATA-LRS can be disassembled to component level for inspection, cleaning, maintenance and repair, and can be autonomously reassembled by novices after a minimal training. The modular buildup is expected to reduce purchasing and repair costs. The instrument has been shown intuitive by use without extensive training.
Keywords: Laparoscopy; Low resource settings; Modular; Steerable.
Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.