Focused Ultrasound for Pediatric Diseases

Pediatrics. 2022 Mar 1;149(3):e2021052714. doi: 10.1542/peds.2021-052714.

Abstract

Focused ultrasound (FUS) is a noninvasive therapeutic technology with multiple pediatric clinical applications. The ability of focused ultrasound to target tissues deep in the body without exposing children to the morbidities associated with conventional surgery, interventional procedures, or radiation offers significant advantages. In 2021, there are 10 clinical pediatric focused ultrasound studies evaluating various musculoskeletal, oncologic, neurologic, and vascular diseases of which 8 are actively recruiting and 2 are completed. Pediatric musculoskeletal applications of FUS include treatment of osteoid osteoma and bone metastases using thermal ablation and high-intensity FUS. Pediatric oncologic applications of FUS include treatment of soft tissue tumors including desmoid tumors, malignant sarcomas, and neuroblastoma with high-intensity FUS ablation alone, or in combination with targeted chemotherapy delivery. Pediatric neurologic applications include treatment of benign tumors such as hypothalamic hamartomas with thermal ablation and malignant diffuse intrinsic pontine glioma with low-intensity FUS for blood brain barrier opening and targeted drug delivery. Additionally, low-intensity FUS can be used to treat seizures. Pediatric vascular applications of FUS include treatment of arteriovenous malformations and twin-twin transfusion syndrome using ablation and vascular occlusion. FUS treatment appears safe and efficacious in pediatric populations across many subspecialties. Although there are 7 Food and Drug Administration-approved indications for adult applications of FUS, the first Food and Drug Administration approval for pediatric patients with osteoid osteoma was obtained in 2020. This review summarizes the preclinical and clinical research on focused ultrasound of potential benefit to pediatric populations.

Publication types

  • Review

MeSH terms

  • Adult
  • Biological Transport
  • Blood-Brain Barrier
  • Bone Neoplasms* / diagnostic imaging
  • Bone Neoplasms* / therapy
  • Child
  • Drug Delivery Systems / methods
  • Humans
  • Osteoma, Osteoid*