Prenatal alcohol exposure (PAE) has been linked to atypical brain and cognitive development, including poor academic performance in reading. This study utilized functional magnetic resonance imaging and diffusion tensor imaging to characterize functional and structural mechanisms mediating reading deficits in 26 adolescents with PAE-related facial dysmorphology (fetal alcohol syndrome (FAS)/partial FAS (PFAS)), 29 heavily-exposed (HE) non-syndromal adolescents, in comparison with 19 typically developing controls. The FAS/PFAS and HE groups were balanced in terms of levels of PAE and reading (dis)ability. While neural alterations in the posterior association cortices were evident in both PAE groups, distinctive neural correlates of reading (dis)abilities were observed between adolescents with and without facial dysmorphology. Specifically, compared to the HE and control groups, the syndromal adolescents showed greater activation in the right precentral gyrus during phonological processing and rightward lateralization in an important reading-related tract (inferior longitudinal fasciculus, ILF), suggesting an atypical reliance on the right hemisphere. By contrast, in the HE, better reading skills were positively correlated with neural activation in the left angular gyrus and white matter organization of the left ILF, although the brain function-behavior relation was weaker than among the controls, suggesting less efficient function of the typical reading network. Our findings provide converging evidence at both the neural functional and structural levels for distinctive brain mechanisms underlying atypical reading and phonological processing in PAE adolescents with and without facial dysmorphology.
Keywords: Brain lateralization; DTI; Fetal alcohol spectrum disorders; Fetal alcohol syndrome; Prenatal alcohol exposure; Reading; fMRI.
Copyright © 2022 Elsevier Ltd. All rights reserved.