The essential homeostatic process of dead cell clearance (efferocytosis) is used by viruses in an act of apoptotic mimicry. Among others, virions leverage phosphatidylserine (PS) as an essential "eat me" signal in viral envelopes to increase their infectivity. In a virus-inspired biomimetic approach, we demonstrate that PS can be incorporated into non-viral lipid nanoparticle (LNP) pDNA/mRNA constructs to enhance cellular transfection. The inclusion of the bioactive PS leads to an increased ability of LNPs to deliver nucleic acids in vitro to cultured HuH-7 hepatocellular carcinoma cells resulting in a 6-fold enhanced expression of a transgene. Optimal PS concentrations are in the range of 2.5 to 5% of total lipids. PS-decorated mRNA-LNPs show a 5.2-fold enhancement of in vivo transfection efficiency as compared to mRNA-LNPs devoid of PS. Effects were less pronounced for PS-decorated pDNA-LNPs (3.2-fold increase). Incorporation of small, defined amounts of PS into gene delivery vectors opens new avenues for efficient gene therapy and can be easily extended to other therapeutic systems.
Keywords: Lipid composition; Lipid nanoparticles; Nucleic acid delivery; Phosphatidylserine; Transfection efficiency; Transfection potency.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.