Background: Spinal gout is uncommon. The clinical manifestations of spinal gout are not characteristic. Huge tophi can invade the vertebral joints and protrude into the spinal canal, even causing spinal canal stenosis, which may result in irreparable spinal cord injury. Therefore, early diagnosis and treatment is very important. Summarizing the imaging features of spinal gout may help clinicians with an early diagnosis and promptly intervention.
Study design: Retrospective case series.
Objectives: To describe the findings from computed tomography (CT) images of spinal gout, including the tophi location, growth pattern, involvement of adjacent joints, and differentiation from other spinal lesions.
Methods: We analyzed CT images from the atlantoaxial joint and lumbar spine in 17 cases with spinal gout.
Results: 17 cases had tophi as high-density masses. 14 (82.4%) cases involved lumbar facet joints, including 7(41.2%)cases involving single vertebral facet joints and 7(41.2%) cases involving multiple vertebral facets. CT imaging showed bone resorption and erosion of the facet joints, as well as narrowing of the joint space. The other three cases (17.6%) involved the atlantoaxial joint, showing a high-density mass around the odontoid process with bone resorption and invasion under the articular surface. One case was secondary to a pathological fracture. Four cases (23.6%) showed a huge mass protruding into the spinal canal where the nerve root was compressed, and even spinal cord injury, leading to serious lower back pain symptomatic of brachial plexus or sciatic nerve compression, and even affected the motor function of lower limbs.
Conclusions: In cases with gouty arthritis involving the axial spine, the lower lumbar spine is mainly involved, high-density tophi grow forward and backward around the facet joints, CT image shows bone resorption, erosion of facet joints, and narrowing of the joint space. With atlantoaxial joint involvement, there was evidence of bone resorption combined with joint.
© 2022. The Author(s), under exclusive licence to International Spinal Cord Society.