Mechanistic Characterization of the Pharmacological Profile of HS-731, a Peripherally Acting Opioid Analgesic, at the µ-, δ-, κ-Opioid and Nociceptin Receptors

Molecules. 2022 Jan 28;27(3):919. doi: 10.3390/molecules27030919.

Abstract

Accumulated preclinical and clinical data show that peripheral restricted opioids provide pain relief with reduced side effects. The peripherally acting opioid analgesic HS-731 is a potent dual μ-/δ-opioid receptor (MOR/DOR) full agonist, and a weak, partial agonist at the κ-opioid receptor (KOR). However, its binding mode at the opioid receptors remains elusive. Here, we present a comprehensive in silico evaluation of HS-731 binding at all opioid receptors. We provide insights into dynamic interaction patterns explaining the different binding and activity of HS-731 on the opioid receptors. For this purpose, we conducted docking, performed molecular dynamics (MD) simulations and generated dynamic pharmacophores (dynophores). Our results highlight two residues important for HS-731 recognition at the classical opioid receptors (MOR, DOR and KOR), particular the conserved residue 5.39 (K) and the non-conserved residue 6.58 (MOR: K, DOR: W and KOR: E). Furthermore, we assume a salt bridge between the transmembrane helices (TM) 5 and 6 via K2275.39 and E2976.58 to be responsible for the partial agonism of HS-731 at the KOR. Additionally, we experimentally demonstrated the absence of affinity of HS-731 to the nociceptin/orphanin FQ peptide (NOP) receptor. We consider the morphinan phenol Y1303.33 responsible for this affinity lack. Y1303.33 points deep into the NOP receptor binding pocket preventing HS-731 binding to the orthosteric binding pocket. These findings provide significant structural insights into HS-731 interaction pattern with the opioid receptors that are important for understanding the pharmacology of this peripheral opioid analgesic.

Keywords: GPCR; HS-731; analgesia; binding; molecular docking; molecular dynamics simulations; opioid receptor; peripheral opioid agonist; selectivity.

MeSH terms

  • Analgesics, Opioid / chemistry
  • Analgesics, Opioid / pharmacology*
  • Animals
  • CHO Cells
  • Cricetulus
  • Epoxy Compounds / chemistry
  • Epoxy Compounds / pharmacology*
  • Humans
  • Molecular Docking Simulation
  • Morphinans / chemistry
  • Morphinans / pharmacology*
  • Nociceptin Receptor
  • Receptors, Opioid / metabolism
  • Receptors, Opioid, delta / metabolism
  • Receptors, Opioid, kappa / metabolism
  • Receptors, Opioid, mu / metabolism

Substances

  • 2-((4,5alpha-epoxy-3-hydroxy-14beta-methoxy-17-methylmorphinan-6beta-yl)amino)acetic acid
  • Analgesics, Opioid
  • Epoxy Compounds
  • Morphinans
  • Receptors, Opioid
  • Receptors, Opioid, delta
  • Receptors, Opioid, kappa
  • Receptors, Opioid, mu
  • Nociceptin Receptor