Planting Systems Affect Soil Microbial Communities and Enzymes Activities Differentially under Drought and Phosphorus Addition

Plants (Basel). 2022 Jan 25;11(3):319. doi: 10.3390/plants11030319.

Abstract

The use of phosphorus (P) to alleviate soil nutrient deficiency alters resources in plant and microbial communities, but it remains unknown how mixed and monospecific planting of forest tree species shape soil microbial structure and functions in response to drought and its interplay with phosphorus addition. We investigated the microbial structure and chemical properties of forest soils planted with P. zhennan monoculture, A. cremastogyne monoculture, and their mixed cultures. The three planting systems were exposed to drought (30-35% water reduction) and the combination of drought with P. A well-watered treatment (80-85% water addition) of similar combinations was used as the control. Planting systems shaped the effects of drought on the soil microbial properties leading to an increase in nitrate nitrogen, urease activity, and microbial biomass carbon in the monocultures, but decrease in mixed cultures. In the monoculture of P. zhennan, addition of P to drought-treated soil increased enzyme activities, the concentration of dissolved organic nitrogen, and carbon, leading to increase in the total bacteria, G+ bacteria, and arbuscular mycorrhizal fungi. Except in the drought with P addition treatment, the impact of admixing on total phospholipid fatty acids (PLFAs), bacterial PLFA, and fungi PLFA was synergistic in all treatments. Our findings indicated that in monoculture of P. zhennan and its mixed planting with A. cremastogyne, greater biological activities could be established under drought conditions with the addition of P.

Keywords: drought; ecosystem functions; microbial function; mixed culture; monoculture; phosphorus.