The practice of abusing antibiotics to improve livestock growth poses a threat to food safety. To prevent and regulate this, accurate monitoring of residual veterinary drugs (VDs) is required. A method based on QuEChERS with dispersive solid-phase extraction for the determination of multi-class VDs was investigated using selected product ions under optimized multiple reaction monitoring conditions. During the clean-up procedure, chitosan, octadecyl silica, primary-secondary amine, and enhanced matrix removal (EMR)-lipid were evaluated for simultaneous analysis of multi-class VDs in beef matrix. The EMR sorbent was most advantageous (113/115) compared to others, and showed a satisfactory recovery range (70.7-117.9%) except cefquinome (67.3%) and cefalonium (69.8%). This methodology can be used to detect oxolinic acid and ractopamine (27.4% and 88.0% of maximum residue limit, respectively) in real beef samples. We thus study propose a simple and fast analytical method for multi-class VDs for the future health of humans and animals.
Keywords: Clean-up; Enhanced matrix removal; Heatmap; Method validation; Multiple reaction monitoring; Residual veterinary drugs.
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.