A thorough understanding of produced water (PW) quality is critical to advance the knowledge and tools for effective PW management, treatment, risk assessment, and feasibility for beneficial reuse outside the oil and gas industry. This study provides the first step to better understand PW quality to develop beneficial reuse programs that are protective of human health and the environment. In total, 46 PW samples from unconventional operations in the Permian Basin and ten surface water samples from the Pecos River in New Mexico were collected for quantitative target analyses of more than 300 constituents. Water quality analyses of Pecos River samples could provide context and baseline information for the potential discharge and reuse of treated PW in this area. Temporal PW and river water quality changes were monitored for eight months in 2020. PW samples had total dissolved solids (TDS) concentrations ranging from 100,800-201,500 mg/L. Various mineral salts, metals, oil and grease, volatile and semi-volatile organic compounds, radionuclides, ammonia, hydraulic fracturing additives, and per- and polyfluoroalkyl substances were detected at different concentrations. Chemical characterization of organic compounds found in Pecos River water showed no evidence of PW origin. Isometric log-ratio Na-Cl-Br analysis showed the salinity in the Pecos River samples appeared to be linked to an increase in natural shallow brine inputs. This study outlines baseline analytical information to advance PW research by describing PW and surrounding surface water quality in the Permian Basin that will assist in determining management strategies, treatment methods, potential beneficial reuse applications, and potential environmental impacts specific to intended beneficial use of treated PW.
Keywords: Pecos river; Permian Basin; Produced water characterization; Water quality; Water reuse.
Copyright © 2022 Elsevier B.V. All rights reserved.