Cadmium, a toxic heavy metal, seriously affects human health and ecological security. The cation/H+ exchanger (CAX) family is a unique metal transporter that plays a crucial role in Cd acquisition, transfer, and remission in plants. Although there are many studies related to the genome-wide analysis of Populus trichocarpa, little research has been done on the CAX family genes, especially concerning Cd stress. In this study, genome-wide analysis of the Populus CAX family identified seven stress-related CAX genes. The evolutionary tree indicated that the CaCA family genes were grouped into four clusters. Moreover, seven pairs of genes were derived by segmental duplication in poplars. Cis-acting element analysis identified numerous stress-related elements in the promoters of diverse PtrCAXs. Furthermore, some PtrCAXs were up-regulated by drought, beetle, and mechanical damage, indicating their possible function in regulating stress response. Under cadmium stress, all CAX genes in the roots were up-regulated. Our findings suggest that plants may regulate their response to Cd stress through the TF-CAXs module. Comprehensively investigating the CAX family provides a scientific basis for the phytoremediation of heavy metal pollution by Populus.
Keywords: CAX gene family; Cadmium stress; Expression pattern; Genome-wide; Poplar.
Copyright © 2022. Published by Elsevier B.V.