Strong interchain interactions of conjugated polymers usually result in poor miscibility with molecular dopants, limiting the doping efficiency because of uncontrolled phase separation. We have developed a strategy to achieve efficient charge-transport and high doping miscibility in n-doped conjugated polymers. We solve the miscibility issue through disorder side-chains containing dopants better. Systemic structural characterization reveals a farther side-chain branching point will lead to higher disorders, which provides appropriate sites to accommodate extrinsic molecular dopants without harming original chain packings and charge-transport channels. Therefore, better sustainability of solid-state microstructure is obtained, yielding a stable conductivity even when overloading massive dopants. This work highlights the importance of realizing high host-dopant miscibility in molecular doping of conjugated polymers.
Keywords: Charge Transport; Conducting Polymers; Electrical Conductivity; Host-Dopant Miscibility; n-Doping.
© 2022 Wiley-VCH GmbH.