Woodsmoke particle exposure prior to SARS-CoV-2 infection alters antiviral response gene expression in human nasal epithelial cells in a sex-dependent manner

Am J Physiol Lung Cell Mol Physiol. 2022 Mar 1;322(3):L479-L494. doi: 10.1152/ajplung.00362.2021. Epub 2022 Feb 2.

Abstract

Inhalational exposure to particulate matter (PM) derived from natural or anthropogenic sources alters gene expression in the airways and increases susceptibility to respiratory viral infection. Woodsmoke-derived ambient PM from wildfire events during 2020 was associated with higher COVID-19 case rates in the western United States. We hypothesized that exposure to suspensions of woodsmoke particles (WSPs) or diesel exhaust particles (DEPs) prior to SARS-CoV-2 infection would alter host immune gene expression at the transcript level. Primary human nasal epithelial cells (hNECs) from both sexes were exposed to WSPs or DEPs (22 μg/cm2) for 2 h, followed by infection with SARS-CoV-2 at a multiplicity of infection of 0.5. Forty-six genes related to SARS-CoV-2 entry and host response were assessed. Particle exposure alone minimally affected gene expression, whereas SARS-CoV-2 infection alone induced a robust transcriptional response in hNECs, upregulating type I and III interferons, interferon-stimulated genes, and chemokines by 72 h postinfection (p.i.). This upregulation was higher overall in cells from male donors. However, exposure to WSPs prior to infection dampened expression of antiviral, interferon, and chemokine mRNAs. Sex stratification of these results revealed that WSP exposure downregulated gene expression in cells from females more so than males. We next hypothesized that hNECs exposed to particles would have increased apical viral loads compared with unexposed cells. Although apical viral load was correlated to expression of host response genes, viral titer did not differ between groups. These data indicate that WSPs alter epithelial immune responses in a sex-dependent manner, potentially suppressing host defense to SARS-CoV-2 infection.

Keywords: SARS-CoV-2 host response; nasal epithelium; particulate matter; sex difference; woodsmoke.

Publication types

  • Research Support, N.I.H., Extramural