Nox2 underpins microvascular inflammation and vascular contributions to cognitive decline

J Cereb Blood Flow Metab. 2022 Jul;42(7):1176-1191. doi: 10.1177/0271678X221077766. Epub 2022 Feb 1.

Abstract

Chronic microvascular inflammation and oxidative stress are inter-related mechanisms underpinning white matter disease and vascular cognitive impairment (VCI). A proposed mediator is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2), a major source of reactive oxygen species (ROS) in the brain. To assess the role of Nox2 in VCI, we studied a tractable model with white matter pathology and cognitive impairment induced by bilateral carotid artery stenosis (BCAS). Mice with genetic deletion of Nox2 (Nox2 KO) were compared to wild-type (WT) following BCAS. Sustained BCAS over 12 weeks in WT mice induced Nox2 expression, indices of microvascular inflammation and oxidative damage, along with white matter pathology culminating in a marked cognitive impairment, which were all protected by Nox2 genetic deletion. Neurovascular coupling was impaired in WT mice post-BCAS and restored in Nox2 KO mice. Increased vascular expression of chemoattractant mediators, cell-adhesion molecules and endothelial activation factors in WT mice post-BCAS were ameliorated by Nox2 deficiency. The clinical relevance was confirmed by increased vascular Nox2 and indices of microvascular inflammation in human post-mortem subjects with cerebral vascular disease. Our results support Nox2 activity as a critical determinant of VCI, whose targeting may be of therapeutic benefit in cerebral vascular disease.

Keywords: NADPH oxidase; Vascular cognitive impairment; cerebral hypoperfusion; inflammation; white matter.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carotid Stenosis*
  • Cognitive Dysfunction* / pathology
  • Inflammation / pathology
  • Mice
  • Mice, Inbred C57BL
  • NADPH Oxidase 2* / genetics
  • NADPH Oxidase 2* / metabolism
  • White Matter* / pathology

Substances

  • Cybb protein, mouse
  • NADPH Oxidase 2