The relatively low resistivity and severe ion migration in CsPbBr3 significantly degrade the performance of X-ray detectors due to their high detection limit and current drift. The electrical properties and X-ray detection performances of CsPbBr3 -nIn single crystals are investigated by doping the iodine atoms into the melt-grown CsPbBr3 . The resistivity of CsPbBr3 -nIn single crystals increases from 3.6 × 109 (CsPbBr3 ) to 2.2 × 1011 (CsPbBr2 I) Ω cm, restraining the leak current and decreasing the detection limit of the detector. Additionally, CsPbBr3 -nIn single crystals exhibit stable dark currents, arising from their high ion migration activation energy. A record sensitivity of 6.3 × 104 µC Gy-1 cm-2 (CsPbBr2.9 I0.1 ) and a low detection limit of 54 nGy s-1 (CsPbBr2 I) are achieved by CsPbBr3 -nIn single crystals for the 120 keV hard X-ray detection under a 5000 V cm-1 electrical field. The CsPbBr2.9 I0.1 detector shows a stable current response with a dark current density of 0.58 µA cm-2 for 30 days and clear imaging for 120 keV Xrays at ambient conditions. The effective iodine atom doping strategy makes the CsPbBr3 -nIn single crystals promising for reproducible high-energy hard X-ray imaging systems.
Keywords: 120 keV X-ray detection; X-ray imaging; all-inorganic perovskite single crystals; high sensitivity; mixed-halide perovskites.
© 2022 Wiley-VCH GmbH.