Human cytomegalovirus (HCMV) encodes G protein-coupled receptors (GPCRs) US28 and US27, which facilitate viral pathogenesis through engagement of host G proteins. Here we report cryo-electron microscopy structures of US28 and US27 forming nonproductive and productive complexes with Gi and Gq, respectively, exhibiting unusual features with functional implications. The "orphan" GPCR US27 lacks a ligand-binding pocket and has captured a guanosine diphosphate-bound inactive Gi through a tenuous interaction. The docking modes of CX3CL1-US28 and US27 to Gi favor localization to endosome-like curved membranes, where US28 and US27 can function as nonproductive Gi sinks to attenuate host chemokine-dependent Gi signaling. The CX3CL1-US28-Gq/11 complex likely represents a trapped intermediate during productive signaling, providing a view of a transition state in GPCR-G protein coupling for signaling. Our collective results shed new insight into unique G protein-mediated HCMV GPCR structural mechanisms, compared to mammalian GPCR counterparts, for subversion of host immunity.