Objective: Although schizophrenia patients are at a heightened risk of exhibiting violent behaviours compared to the general population, few functional neuroimaging studies have explored the aberrant neurocircuitry underpinning such behaviours. This study aimed to identify disrupted resting-state activity and functional connectivity in schizophrenia patients with a history of violence.
Methods: Resting state functional magnetic resonance imaging data was collected from 62 schizophrenia patients and 25 healthy controls. Voxel-wise analyses of fractional amplitude of low frequency fluctuations (fALFF) were implemented to investigate disrupted regional patterns of spontaneous brain activity. Brain regions which yielded significant differences between groups were subsequently used as data-driven seeds for functional connectivity analyses. Finally, significant alterations (activity and connectivity) were correlated with lifetime violent behaviours.
Results: When compared to healthy controls, schizophrenia patients exhibited reduced fALFF in multiple brain regions including the (subgenual) anterior cingulate cortex (ACC), posterior cingulate cortex, precuneus cortex and left lateral orbitofrontal cortex (OFC). Seed-to-voxel analyses yielded significantly enhanced connectivity between the ACC and left OFC. The heightened functional connectivity between the latter two regions predicted the number of violent behaviours reported by schizophrenia patients.
Conclusion: The current study demonstrated that the functional connectivity of brain regions associated with emotion regulation is impaired in schizophrenia and associated with violent antecedents among patients. This result is consistent with predominant theoretical models proposing that the OFC plays a critical role in the neurobiology of violence.
Keywords: Emotion; Resting state; Schizophrenia; Violence; fALFF.
Copyright © 2022 Elsevier Ltd. All rights reserved.