Distinctive Adsorption Mechanism and Kinetics of Immunoglobulin G on a Nanoscale Polymer Surface

Langmuir. 2022 Feb 1;38(4):1458-1470. doi: 10.1021/acs.langmuir.1c02710. Epub 2022 Jan 16.

Abstract

Elucidation of protein adsorption beyond simple polymer surfaces to those presenting greater chemical complexity and nanoscopic features is critical to developing well-controlled nanobiomaterials and nanobiosensors. In this study, we repeatedly and faithfully track individual proteins on the same nanodomain areas of a block copolymer (BCP) surface and monitor the adsorption and assembly behavior of a model protein, immunoglobulin G (IgG), over time into a tight surface-packed structure. With discrete protein adsorption events unambiguously visualized at the biomolecular level, the detailed assembly and packing states of IgG on the BCP nanodomain surface are subsequently correlated to various regimes of IgG adsorption kinetic plots. Intriguing features, entirely different from those observed from macroscopic homopolymer templates, are identified from the IgG adsorption isotherms on the nanoscale, chemically varying BCP surface. They include the presence of two Langmuir-like adsorption segments and a nonmonotonic regime in the adsorption plot. Via correlation to time-corresponding topographic data, the unique isotherm features are explained with single biomolecule level details of the IgG adsorption pathway on the BCP. This work not only provides much needed, direct experimental evidence for time-resolved, single protein level, adsorption events on nanoscale polymer surfaces but also signifies mutual linking between specific topographic states of protein adsorption and assembly to particular segments of adsorption isotherms. From the fundamental research viewpoint, the correlative ability to examine the nanoscopic surface organizations of individual proteins and their local as well as global adsorption kinetic profiles will be highly valuable for accurately determining protein assembly mechanisms and interpreting protein adsorption kinetics on nanoscale surfaces. Application-wise, such knowledge will also be important for fundamentally guiding the design and development of biomaterials and biomedical devices that exploit nanoscale polymer architectures.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adsorption
  • Immunoglobulin G* / chemistry
  • Kinetics
  • Polymers* / chemistry
  • Surface Properties

Substances

  • Immunoglobulin G
  • Polymers