Sagittal spine disposition and pelvic tilt during outdoor fitness equipment use and their associations with kinanthropometry proportions in middle-aged and older adults

PeerJ. 2021 Dec 20:9:e12657. doi: 10.7717/peerj.12657. eCollection 2021.

Abstract

Background: Outdoor fitness training has become popular as a tool for improving the health, especially middle-aged and older adults. For this purpose, outdoor fitness equipment (OFE) have been installed in public areas. However, their safety and effectiveness are still unknown. The aim of the present research was to analyze the sagittal disposition of the spine and pelvic tilt during the use of OFE, and to determine the influence of anthropometric variables on these factors in middle-aged and older adults.

Methods: Seventy healthy volunteers, 56 women and 14 men (age: 63.14 ± 8.19 years) participated in the study. Sagittal spine disposition and pelvic tilt were measured using a Spinal Mouse®, in the relaxed standing position, and during the use of the OFE. In addition, kinanthropometry variables were also measured according to the guidelines of the International Society for the Advancement of Kinanthropometry.

Results: Regarding thoracic kyphosis, a significant decrease was found in thoracic kyphosis in the initial position (IP) in single bonny rider (SBR) (p = 0.006) and row (p = 0.046), and a significant increase in the final position (FP) in the row (p = 0.011), surfboard (p < 0.001) and air walker (p = 0.027) machines. In relation to the lumbar curvature and pelvic tilt, a significant decrease in lumbar lordosis and a decrease in pelvic anteversion were observed in the IP and FP in SBR and row; and in the bike (p < 0.001) machine. In the surfboard machine, a significant decrease in lumbar lordosis was found (p = 0.002), with no changes in pelvic tilt. According to the multiple linear regression analysis, the subjects with a higher cormic index and height were more at risk of increasing their thoracic kyphosis, decreasing lumbar lordosis and/or decreasing pelvic anteversion towards pelvic retroversion.

Conclusions: Middle-aged and older adults show spinal misalignments when using the OFE with respect to the standing position, showing a decrease in the thoracic kyphosis in IP of SBR and ROW, and a significant increase in the surfboard and air walker, and in the FP of Row, in the lumbar lordosis in all the OFE in sitting and some in standing, and in the pelvic anteversion in all the OFE in sitting. The variables height and the cormic index explained most of the changes in sagittal spine disposition.

Keywords: Ergonomic; Posture; Public facility; Spinal curvature; Sports and recreational facilities; Sports equipment.

Grants and funding

This work was supported by the Spanish Ministry of Science, Innovation and Universities with the support and funding of the project: “Intelligent outdoor fitness equipment: Design and manufacture of new ergonomic, efficient and healthy outdoor fitness equipment with an application for mobile devices (APP) to assess and control training” (code RTC-2017-6145-1, 2017). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.