Mycobacterium kansasii, an important opportunistic pathogen of humans, causes serious pulmonary disease. Sixty M. kansasii isolates were collected for investigating the clinical characteristics of patients with M. kansasii infections as well as drug susceptibility and genotypes of M. kansasii. More than 90% of the patients infected with M. kansasii were from eastern China. According to the internal transcribed spacers (ITS), rpoB, hsp65, and tuf, all M. kansasii isolates were classified as molecular type I, irrespective of the disease manifestation. Sixty M. kansasii isolates from China were diverse and separated into four branches. Pairwise average nucleotide identity (ANI) values for M. kansasii isolates affiliated with different genotypes were more than 85%. The earliest isolate was isolated from Jiangsu in 1983. Of the isolates, 78.3% (47/60) were isolated since 1999. All isolates were sensitive to rifabutin. All but one isolate was sensitive to clarithromycin. Sensitivity rates to rifampin, amikacin, moxifloxacin, and linezolid were 80.0%, 90.0%, 88.3%, and 91.7%, respectively. A high rate of resistance was noted for ciprofloxacin (44 isolates, 73.3%) and ethambutol (46 isolates, 76.7%). Compared with M. tuberculosis H37Rv, 12 mutations of embCA were observed in all M. kansasii isolates. All these 60 M. kansasii isolates shared identical sequences of rpoB, inhA, katG, rrl, rrs, rpsL, gyrA, and gyrB. In conclusion, M. kansasii isolates are exhibiting greater genetic diversity globally. The resistance mechanism of M. kansasii is not necessarily related to gene mutation. IMPORTANCE M. kansasii type I is the main genotype spreading worldwide. The molecular history of the global spread of type I isolates remains largely unclear. We conducted a detailed analysis of genomic evolution of global M. kansasii isolates. Our results suggest that M. kansasii isolates exhibit greater genetic diversity globally.
Keywords: Mycobacterium kansasii; drug sensitivity; genotype.